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Abstract—The European balancing market is undergoing rad-
ical transformation through numerous market design initiatives.
These initiatives aim at improving geographical coordination
among European transmission system operators, and better
positioning the European system for integrating renewable re-
sources through short-term operational efficiency and long-term
investment in flexible resources. However, the European design is
characterized by a missing market for real-time reserve capacity,
that has been inherited from a failure to recognize the central
role of real-time operations as the spot market of the electric
power industry. This missing market undermines the valuation
of reserve capacity, and the back-propagation of price signals to
forward reserve markets that can support investment in reserves.
The goal of the present paper is to develop a methodology that
exposes the implications of this missing market. The methodology
relies on analytical insights that can be derived under an
assumption of price-taking behavior. These insights are validated
by a simulation model which represents the European balancing
market as a Markov Decision Process. The simulation model is
used for validating the analytical insights and testing the ability
of various balancing market design options to back-propagate
the real-time value of reserve to forward reserve markets.

Index Terms—reserves, operating reserve demand curves,
scarcity pricing, balancing, Markov Decision Processes

I. INTRODUCTION

A. Trading of Energy and Reserve in European Markets

The European balancing market has been undergoing sig-
nificant transformation in recent years, due to various co-
ordinated balancing initiatives. These initiatives include in-
tegrated market clearing platforms for replacement reserve
(Trans European Replacement Reserves Exchange, abbrevi-
ated “TERRE”), tertiary reserve (Manual Activated Reserves
Initiative, abbreviated “MARI”), secondary reserve (Platform
for the International Coordination of Automated Frequency
Restoration and Stable System Operation, abbreviated “PI-
CASSO”), and primary control (The International Grid Control
Cooperation, abbreviated “IGCC”).

Traditionally, European system operations have been seg-
mented geographically and functionally. Geographical seg-
mentation refers to the fact that each European country is
commonly operated by a single, or a handful, of transmission
system operators (referred to as TSOs hereafter). Functional
separation refers to the fact that the trading of energy and
reserve capacity1 is not coordinated.
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1We ignore transmission capacity in the present paper.

European TSOs are responsible for procuring reserve ca-
pacity, and for deploying reserve capacity in real time. Day-
ahead procurement of reserve capacity can take place before,
during, or after, the clearing of the day-ahead energy exchange,
depending on the country [1], [2]. The operation of the
European day-ahead and intraday market is conducted by
Nominated Electricity Market Operators (NEMOs), which are
separated functionally from TSOs. NEMOs are responsible for
trading energy in the day-ahead and intraday time frame.

Balancing, in European parlance, refers to the trading of
real-time energy. The entities that trade energy in real time
are the so-called “Balancing Responsible Parties” (abbreviated
BRPs hereafter) and “Balancing Service Providers” (abbrevi-
ated BSPs hereafter). BRPs are essentially portfolio owners
that find themselves producing or consuming more energy in
real time than they have originally traded, and are therefore
essentially price-inelastic buyers or sellers of real-time energy.
BSPs, on the other hand, refer to owners of assets that can offer
reserve services. BSPs submit offers for balancing energy in
the real-time balancing market, they can therefore be viewed
as price-elastic suppliers or consumers of real-time energy.
Upwards balancing refers to the selling of real-time energy by
BSPs, downwards balancing refers to the procurement of real-
time energy by BSPs. By selling reserve capacity in day-ahead
reserve markets, BSPs essentially commit to bidding at least
the amount of capacity that they have sold in the day ahead to
real-time balancing markets. Each BSP must be attributed to
a unique BRP portfolio, as foreseen in article 18(4).d of the
European Balancing Guideline [3].

From an economic standpoint, the essential difference be-
tween BRPs and BSPs is price elasticity in the real-time
energy market, and the ability of the latter to provide reserve
capacity. The functional separation of BSPs and BRPs in
system operations, however, has been misunderstood as a
license to introduce a market distortion, whereby the two
are paid differently for trading the same product of real-time
energy. Concretely, BRPs are settled for their real-time energy
deviations at a so-called imbalance price, whereas BSPs are
settled for their real-time deviations at a so-called balancing
price2. The two may be different, even though they apply to the
same product, real-time energy. Furthermore, it is not clear that
the balancing platforms mentioned in the opening paragraph
of this text will be coherent in terms of setting a price for real-
time energy (in the sense that balancing energy from different
platforms may be priced differently).

2Although certain European national balancing markets currently rely on
pay-as-bid settlements, the aforementioned integrated EU balancing platforms
that are being put in place will be trading at a uniform balancing price.
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Compared to US-style pools, therefore, European markets
differ along the following major axes: (i) There is no co-
optimization of energy and reserve in the day ahead, the two
are traded in separate auctions. Energy auctions are operated
by NEMOs. Reserve auctions are operated by TSOs. (ii)
Energy is traded in real time by balancing platforms which
are operated by TSOs. The counterparties in the trading of
real-time energy are BSPs and BRPs. (iii) There is a lack of a
unique price signal for real-time energy. (vi) Reserve capacity
is not traded in real time in the European market. This creates
challenges in the valuation of reserve, as we discuss next.

B. Motivation of Our Paper

The accurate valuation of energy and reserve capacity is an
increasingly crucial function of real-time markets in a regime
of large-scale renewable energy integration. Operating reserve
demand curves (ORDCs) [4] have been proposed as a means
for achieving this important goal. ORDC adders are computed
on the basis of available reserve capacity in the system. As the
amount of reserve capacity in the system decreases, ORDC
adders increase, and reflect the value of reserve in a tight
system. As the available reserve capacity increases, ORDC
adders dissipate, since the system is not experiencing scarcity.

ORDC adders have been adopted in Texas [5], and their
adoption is moving forward in PJM [6]. The Electricity Bal-
ancing Guideline of the European Commission, which is the
reference text for European balancing legislation (and which
we will refer to as “EBGL” hereafter), introduces the legal
possibility of implementing ORDC adders by referring to the
mechanism as a “scarcity pricing function” in article 44(3) of
the legislation [3].

Belgium has made steps in advancing the implementation of
scarcity pricing. A series of preliminary analyses have focused
on quantifying the possible implications of the mechanism for
resources that can provide reserve to the system [7], [8]. The
Belgian system operator and regulator [9] has collaborated
with the authors towards computing and publishing scarcity
adders based on the “available reserve capacity” (ARC) of the
system. These adders are computed for every quarter of the
day, and published one day after operations.

In US parlance, the ORDC adder effectively sets the real-
time price for reserve capacity. Since prices in energy and
reserve have to be consistent in equilibrium (and this equilib-
rium is respected automatically in a co-optimization of energy
and reserve), the ORDC adder also uplifts the real-time energy
price. These first principles translate to the following market
design proposals for implementing scarcity pricing in the EU
market design [1]:
• Market design proposal 1: the introduction of a scarcity

adder to the imbalance price.
• Market design proposal 2: the application of the same

adder to the balancing energy price.
• Market design proposal 3: the implementation of an

EU real-time market for reserve capacity (equivalently, a
market for “reserve imabalances”, in the same way that
we operate a market for energy imbalances), which is a
missing market in the existing EU balancing design.

Market design proposal 3 means that the scarcity adder
should (1) apply to BSP capacity that is not activated, (2)
apply to free bids that are available in real time even if they
have not sold reserve capacity in the day ahead, and (3) apply
for buying back reserve capacity that has been activated as
upward balancing energy and is no longer available as reserve
capacity in real time.

Justifying these three market design changes (especially the
second and third) to stakeholders with quantitative models has
been challenging, as we outline below. The present paper is
an attempt to develop an analytical and simulation framework
towards advancing this goal.

C. Existing Modeling Frameworks

The intuitive economic arguments of why we need the three
aforementioned market design changes are the following:
• Economic principle 1: Real-time energy is a unique

product, therefore the buyer and seller should exchange
it at the same price.

• Economic principle 2: If we put in place a real-time
market for reserve capacity, then agents will only sell
reserve capacity in forward markets at the value that
they would need to buy it back in real time. This second
principle is especially crucial, since it allows the value of
reserve capacity to back-propagate into forward reserve
auctions, and send the signal to investors that the market
can support investments in reserve capacity.

In previous analysis [1], stochastic equilibrium has been
used as our quantitative method of choice for representing the
back-propagation effect quantitatively. The stochastic equilib-
rium framework that we have developed, which has originally
been applied in the context of investment [10], [11], reveals the
strengths and weaknesses of different market design choices
in back-propagating the value of reserve to forward reserve
auctions. However, the stochastic equilibrium framework en-
countered an immediate weakness from the outset during
discussions with stakeholders: it embeds economic principle 1,
meaning that the model assumes a unique market for real-time
energy, and therefore a unique price for real-time energy. This
assumption contradicts the practice of using imbalance prices
for BRP settlement that are different from balancing prices
for BSP settlement. To put it differently: whereas stochastic
equilibrium can be used for understanding the effect of certain
market design choices on the back-propagation of reserve
prices to forward markets, it cannot be used for assessing the
validity of different mixtures of BSP and BRP settlement on
this back-propagation.

An alternative model that is developed in this paper is the
representation of the balancing market as a Markov Decision
Process (MDP). Our approach is inspired by a growing body
of work on the application of agent-based models to the
analysis of electricity markets. In early work on this topic,
Bunn and coauthors [12], [13] analyze the effect of a change
of design in the England and Wales market. In recent work,
with the broader use of Reinforcement Learning techniques
such as Q-Learning [14], researchers have applied MDPs
[15], [16] in more complex settings. However, these classical
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Reinforcement Learning techniques are inefficient for high-
dimensional problems because they rely on the discretization
of the state and action space. This problem has been overcome
recently by the development of deep-learning [17], [18]. As
we discuss in section II-A, our problem is low-dimensional,
and therefore we rely on the standard Q-learning algorithm
[14].

In the context of our analysis, we consider BRPs and BSPs
as agents that engage in trade in a balancing market, and de-
velop trading strategies given different market design options.
We then test the ability of agents to infer the value of the
reserve capacity that they offer to the market under different
market design choices, and thus the ability of different market
design choices to back-propagate the value of this reserve in
forward reserve markets.

The MDP framework offers powerful modeling flexibility.
However, it is difficult to extract conclusions regarding first
principles, since one is limited to observing the outcome of
a simulation, without necessarily gaining insights about the
role of a market design in driving a certain outcome. For
this reason, we supplement our MDP-based market simulation
framework with an analytical characterization of the best
response of market agents to different balancing market design
choices under an assumption of perfect competition. The MDP
simulation framework is then used for providing tangible
evidence for the behavior that the analytical mathematical
framework predicts, which can be valuable for discussions
with stakeholders.

D. Contributions and Structure

Our claimed contribution in this paper is twofold. We pro-
pose an analytical framework for analyzing European balanc-
ing markets which we supplement by an MDP-based market
simulator. And we use our framework to arrive at concrete
insights and recommendations regarding the design of the
European balancing market. One important recommendation
is to introduce a real-time reserve market in the European
balancing design.

The remainder of the paper is structured as follows. In
section II we describe various market design options for the
European balancing market, and propose an MDP framework
for simulating these different market design options. In section
III we analyze these different market design options under an
assumption of perfect competition, and summarize our main
conclusions regarding the strengths and weaknesses of dif-
ferent market design proposals. In section IV we validate our
theoretical results by applying the MDP simulation framework
of section II in order to test the ability of different balancing
market design options in back-propagating the value of reserve
to forward markets. We conclude our analysis and discuss
prospects for future research in section V.

II. A MODEL OF THE EUROPEAN BALANCING MARKET
BASED ON MARKOV DECISION PROCESSES

A. Building Up the MDP Model

In order to illustrate our full MDP model of the balancing
market, we commence by the simplest possible setting and add

features gradually to the model. We discuss our assumptions
along the way.

As we mention in the introduction, each BSP must be
attributed to a unique BRP according to article 18(4).d of the
EBGL [3]. Without loss of generality, therefore, we consider
a generic agent participating in the balancing market as one
which owns (i) a pool of uncontrollable assets that impose a
price-inelastic imbalance (positive or negative) to the system
as well as (ii) a set of controllable assets with marginal cost C
that is private information of the agent, and with a total upward
capacity P+ and downward capacity P− that is common
knowledge for the TSO and all market agents. The controllable
set of assets can be offered to the balancing market.

1) Single-Stage MDPs: Consider an agent that wishes to
decide how much balancing energy q to offer to a uniform
price auction. In MDP terminology, the decision q is the action
of the agent. For the moment, let us assume that the auction
price is constant and equal to λB over episodes. The reward
of the agent as a function of state and action is described as
(λB − C) · q.

This model can be enriched by introducing the possibility
for the agent to submit price-quantity pairs. Concretely, the
action space can be enlarged to (p, q). This would correspond
to an offer of q MW at p e/MWh. Assuming that the bids of all
competing agents are fixed, this bid implies a balancing price,
and a quantity qa that is accepted by the auction. The reward
of the agent is then expressed as (λB − C) · qa. Note that
the representation of this decision-making problem already
exceeds the expressive ability of mathematical programs with
equilibrium constraints [19].

The next feature that can be added to the model is un-
certainty in the balancing price. This uncertainty can be
represented by introducing a system-level uncertain imbalance
that should be covered by the balancing offers of the agents.

2) Two-Stage MDPs: We are interested, next, in introducing
a difference between the balancing price and the imbalance
price to the model. This is the current practice, for example, in
Belgium, where the system operator computes the imbalance
price by applying a surcharge αU whenever the system is
short, or a discount αL whenever the system is long [20].
Mathematically, the imbalance price in this setting can be
expressed as:

λI = λB + α (1)
α , αU · I[Imbt > UI]− αL · I[Imbt < LI] (2)

The imbalance price is denoted by λI . Here, Imbt corre-
sponds to the total imbalance of the system. The parameters
UI and LI represent the upper and lower imbalance thresholds
at which the surcharge or discount apply, respectively.

We represent the operation of the balancing market through
the following sequence of events. (1) The agent submits a
price-quantity bid in the balancing platform. (2) The agent
observes the imbalance Imb within its portfolio, and decides
how much of it to cover. (3) The TSO observes the system
imbalance, activates BSPs, and produces a uniform clearing
price. (4) The TSO also computes an alpha penalty, which is
added to the balancing price and is charged to BRPs.
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We model this process as a two-stage MDP:
• Stage 1

– State: a single element, the default state of the world.
– Action: (p, q), the price-quantity offers in the bal-

ancing platform.
– No reward is collected at this stage.

• Stage 2
– State: (i) the bid price p, (ii) the leftover BSP

capacity after some capacity has been offered to the
balancing auction, and (iii) the level of imbalance
Imb of an agent.

– Action: How much of the imbalance Imb to cover
(this action, denoted as ai and referred to as “active
imbalance”, must be limited to the leftover capacity
that the BSP has not allocated to the reserve auction).

– Reward: (i) BSP payment for upward/downward
activation, expressed as λB ·qa, (ii) BRP payment for
imbalance settlement, expressed as −λI ·(Imb−ai),
and (iii) fuel costs related to self-balancing and BSP
activation, expressed as −C · (ai+ qa).

Note that active imbalance, which corresponds to ai 6= 0,
is a practice which TSOs do not necessarily encourage. Nev-
ertheless, it is impossible to enforce ai = 0, since agents are
in control of their private assets, and since the net demand
forecast of a portfolio is private information that the TSO
cannot audit [1].

3) Three-Stage MDPs: In order to model the back-
propagation of the value of reserve to forward reserve capacity
auctions, we introduce a uniform-price auction for reserve
capacity. This corresponds, for example, to European day-
ahead reserve capacity auctions for secondary or tertiary
reserve [2].

The overall model can be described as the following three-
stage MDP:
• Stage 1

– State: a single element, the default state of the world.
– Action: (pR, qR), the price-quantity offers in the

reserve capacity auction.
– Rewards: the payment from the reserve capacity

auction.
• Stage 2

– State: the capacity qaR awarded in the reserve ca-
pacity auction.

– Action: (p, q), the price-quantity offers in the bal-
ancing platform. The offered quantity can be no less
than what has been cleared in the reserve auction.

– No reward is collected at this stage.
• Stage 3: identical to the two-stage MDP.

B. Market Design Variants

Our analysis will focus on four different market design
options. These options are inspired by discussions with stake-
holders about different ways in which the European balancing
market could be organized so as to enable a more accurate
reflection of the value of reserve capacity.

1) The Vanilla European Design (D1): The default Euro-
pean design is the one corresponding to section II-A3, for
which the imbalance penalty α of Eq. (1) is equal to zero.
This implies that, in this design, the balancing price equals
the imbalance price, λI = λB .

This design is fully compatible with the EBGL. However, as
we show in the following section and verify experimentally in
section IV, it fails at generating a forward reserve price signal.
Inherently, therefore, this mechanism fails to value reserve
capacity. The reason is that, in this design, there is a missing
market for trading reserve capacity in real time.

2) Imbalance Penalties (D2): The inherent inability of
design (D1) to generate a forward reserve price signal that
reflects the value of reserve has already been discussed based
on a stochastic equilibrium framework in [1]. In response to
the request of the European Commission for planned market
reforms in order to implement scarcity pricing (article 20(3) of
regulation 2019/943 [21]) the Belgian government [22] men-
tions that the imbalance penalty α of Eq. (1), “already exhibits
quite some characteristics of a scarcity pricing mechanism”
[22]. What we show in the sequel is that, in the case of
independent imbalances and a symmetric imbalance penalty
α, design (D2) behaves identically to design (D1).

It is important to note that design (D2) relies on imbalance
penalties α which depend on the level of system imbalance,
which is not to be confused with the level of scarcity in
the system. To clarify: a system that is exhibiting a very
large positive imbalance is not experiencing scarcity if it
carries abundant reserve at the moment in time when the large
imbalance occurs.

In practice, the imbalance penalty in Eq. (1) depends on
the imbalance of the current and previous interval (see Eq. (4)
below). Therefore, the MDP model that we develop for design
(D2) requires an additional state variable, the imbalance of
the previous balancing interval, which is is added to the state
vector of stages 2 and 3.

3) Adders on Imbalance Charges (D3): Scarcity pricing,
as proposed in [1] and following [23], introduces a real-time
price for reserve, or ORDC adder, which is a function of the
instantaneous amount of leftover capacity in the system:

λR = (V OLL− λB) ·
LOLP (P+,tot − Imbt) · I[P+,total − Imbt ≥ 0] +

(V OLL− Cmax) · I[P+,total − Imbt < 0]). (3)

Here, V OLL is an estimate of the value of lost load in the
system, P+,tot is the total reserve capacity that is available,
LOLP (·) is the loss of load probability in the system as a
function of available reserve capacity, and Cmax is an estimate
of the marginal cost of the most expensive unit in the system.
This price signal is reflective of system scarcity, in the sense
that it is adaptive to the amount of leftover reserve capacity,
P+,total − Imbt.

The question is where this adder should be applied. It has
been proposed [24] to apply this adder as an imbalance charge,
as an alternative to the α penalty of Eq. (1). As we demonstrate
analytically in proposition 3.3 and numerically in section IV,
this market design produces a forward reserve price, however
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this signal is significantly weaker than the average value of
reserve capacity to the system. Introducing an adder to the
imbalance price does not rectify the fact that design (D3),
like design (D1) and (D2), is featuring a missing market for
reserve capacity in real time.

4) Scarcity Pricing (D4): The implementation of scarcity
pricing relies on a real-time market for reserve capacity. In
terms of the MDP model, this implies replacing α with λR in
Eq. (1), and introducing the following term in settlement:

−λR · qaR + λR · (P+ − qa− ai).

This term effectively implies that agents buy back their day-
ahead reserve capacity at real-time reserve prices, and sell their
entire real-time reserve capacity at real-time reserve prices.
Introducing this settlement of real-time reserve imbalances
induces agents to bid their reserve capacity in forward markets
in a way that anticipates the expected price at which they
would be required to buy that reserve capacity back in real
time. This effect results in the back-propagation of the scarcity
signal.

The mechanism amounts to introducing a real-time market
for reserve capacity, and is exactly analogous to the practice
of settling energy imbalances at prevailing real-time energy
prices. Furthermore, the approach is compatible with the
EBGL, since one can invoke article 18(4).d of the EBGL for
attributing a BSP to an associated BRP, and article 44(3) of
the EBGL for introducing an additional settlement mechanism
which is separate from imbalance settlement.

Note that the representation of this design requires augment-
ing the MDP model of section II-A3 by adding the awarded
day-ahead reserve capacity qaR to the state of the third time
step, since this quantity affects the third-stage payoff under
design (D4).

III. ANALYTICAL RESULTS

This section analyzes each of the four designs that are intro-
duced in section II under the simplifying assumption of perfect
competition. Unveiling difficulties in back-propagating reserve
prices in the case of perfect competition suggests fundamental
market design problems, and offers insights about what to
expect in the simulations of section IV-B. Our simplifying
assumption can be stated as follows:

Perfect competition assumption: We consider a fringe
agent, i.e. one with infinitesimal capacity.

In order to keep the development concise, we proceed by
characterizing the optimal strategy of a fringe agent in section
III-A. We then outline the strategy of our proofs in section
III-B. The full proof for each of the following propositions is
available online [25].

A. Statement of Analytical Results

Proposition 3.1: In design (D1), it is always optimal
for agents to bid their entire balancing capacity at the true
marginal cost to the balancing auction. For agents with upward
balancing capacity (P+ > 0), the opportunity cost of bidding
their capacity to the day-ahead reserve auction is zero. This is
a pure strategy Nash equilibrium.

Proposition 3.2: Under the assumption of independent
symmetric imbalances, in design (D2) it is always optimal
for agents to bid their entire balancing capacity at the true
marginal cost to the balancing auction. For agents with upward
balancing capacity (P+ > 0), the opportunity cost of bidding
their capacity to the day-ahead reserve auction is zero. This is
a pure strategy Nash equilibrium.

Proposition 3.3: In design (D3), it is sometimes, but
not always, optimal for agents to bid their entire balancing
capacity at the true marginal cost to the balancing auction.
For agents with upward balancing capacity (P+ > 0), the
opportunity cost of bidding their capacity to the day-ahead
reserve auction is less than or equal to the scarcity value E[λR].
This does not characterize a pure strategy Nash equilibrium,
since some agents find it optimal to self-balance.

Design (D3) is depressing the scarcity price in two ways: (i)
agents who find it optimal to self-balance face an opportunity
cost which is less than the scarcity price E[λR], and (ii) agents
who find it optimal to bid their entire capacity to the balancing
auction face an opportunity cost of zero for bidding reserve
in the day ahead.

Proposition 3.4: In design (D4), it is always optimal
for agents to bid their entire balancing capacity at the true
marginal cost to the balancing auction. This is a pure strategy
Nash equilibrium.

Note that design (D4) emerges as the only option which
back-propagates the real-time value of reserve capacity to
day-ahead reserve auctions, while preserving the incentive
of agents to make their balancing capacity available in the
balancing market. Choosing to offer resources in the balancing
auction instead of self-balancing promotes operational effi-
ciency, since resources are pooled in the balancing auction,
where price discovery and efficient allocation of resources can
take place.

B. Proof Strategy

In this section, we prove the statement of proposition 3.1 for
one case. This technique forms the basis for all the results of
section III-A, and conveys the basic intuition of our reasoning.
For a detailed proof of all the results of section III-A, the
reader is referred to [25].

The first step in the proof of all the propositions is to
demonstrate that there is no loss of generality in considering
the case of an agent which has only downward capacity (i.e.
P+ = 0 and P− < 0) or the case of an agent which has only
upward capacity (i.e. P− = 0 and P+ > 0) [25].

Once this is established, we can fix the bid (p, q) in the
balancing market. Under the fringe assumption, we can ignore
the influence of the agent decisions ai and the agent imbalance
on the expected imbalance price. In the following calculations,
we denote D , −E[λB · Imb]. This is not affected by the
actions of the agent, and is therefore a constant offset to the
imbalance payoff of the agent.

We have two possible suppliers: (i) the ones for which
E[λB ] ≥ C, and (ii) the ones for which E[λB ] < C. In what
follows, we limit the discussion to the the case of cheap suppli-
ers with upward capacity (E[λB ]−C ≥ 0, P+ > 0, P− = 0).
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Our strategy is to first characterize the optimal bidding strategy
in the balancing market, (p, q), by considering the effect
of these decisions on imbalance settlements and balancing
payments.

The imbalance payoff is computed as follows for agents
with P+ > 0 (and therefore q ≥ 0):

max
ai

(E[λB ]− C) · ai− E[λB · Imb]

ai+ q ≤ P+

ai ≥ 0

We have ai? = P+ − q. The expected payoff zI is then
expressed as follows:

zI = (E[λB ]− C) · (P+ − q) +D

The balancing payoff zB can be expressed as follows:
• If p > λB , then zB(ω) = 0
• If p = λB , then zB(ω) = (λB−C)·qa for some qa which

is selected by the auctioneer. We get rid of this case by
assuming that the auctioneer always activates zero MW
of the supplier when the bid is at the money. Since this
is a fringe supplier, the auctioneer can always source the
imbalance energy from alternative suppliers. Thus, we
have qa = 0 and zB = 0 in this case.

• If p < λB , then zB(ω) = (λB − C) · q.
The realization ω corresponds to the realization of system

imbalance. Note that zB(ω) is random. In fact, the distribution
of λB depends on the decisions of the agent, p and q. In the
sequel, we denote the probability measure of the balancing
price λB as µ.

The expected payoff can therefore be expressed as follows:

zB = E[zB(ω)]

=

∫
x>p

(x− C) · q · dµ(x)

The overall payoff of the agent can therefore be expressed
as follows:

R(p, q) = zI + zB

= C1 − C2 · q + C3(p) · q

where the terms can be described as follows:

C1 = (E[λB ]− C) · P+ +D

C2 = E[λB ]− C

C3(p) =

∫
x>p

(x− C) · dµ(x)

In order to determine the optimal bidding strategy, let us
first fix the bid quantity q of the agent. We can express the
first-order conditions with respect to p as:

∂R(p, q)

∂p
= C ′3(p) · q

= −µ(p) · (p− C) · q

We note that the payoff function R(p, q) for fixed q is
increasing in (−∞, C], zero at C, and decreasing in [C,+∞).

Thus, for any q, an optimal strategy is to bid the true cost. And,
given this strategy, the payoff becomes

R(C, q) = C1 − C2 · q + C3(C) · q

We can show that ∂R(C,q)
∂q > 0 [25]. Therefore, it is optimal

to bid q? = P+ in the balancing auction, and ai? = 0.
This reflects the fact that, when being in active imbalance,
the agent takes the risk of producing power when being out
of the money. Instead, the balancing market will only activate
the agent when its marginal cost is lower than the balancing
price. The fact that the balancing and imbalance price are equal
sends the correct incentive to the agent for bidding its entire
capacity to the balancing auction.

Note that every MW cleared in a forward reserve auction
comes with an obligation to bid that MW in the balancing
auction, so this is profit lost in the balancing and imbalance
phase. Since the optimal strategy of the agent is to anyways
bid its entire capacity in the balancing auction, there is no
opportunity cost for the agent, i.e. dR?/dq = 0. Thus, the
reserve price at which the agent would bid in the day-ahead
reserve auction is zero.

IV. ILLUSTRATION ON A CASE STUDY

We now proceed to a numerical illustration in a simple case
study. In section IV-A we validate the analytical results of
section III by considering a single fringe agent. In section
IV-B we assess the ability of the different designs to back-
propagate reserve prices by considering multiple agents that
compete against each other.

A. Validation of Analytical Results

Consider a system with a fringe supplier that manages a
flexible upward capacity of P+ = 1 MW (and downward
capacity of P− = 0 MW). The marginal cost of the agent is
C = 50 e/MWh. We discretize the action space as follows:
the balancing auction bid q and reserve auction bid qR is either
0 MW or 1 MW, and the agent can bid any value p between
25 to 75 e/MWh, in increments of 5 e/MWh.

The system imbalance is assumed to be normally distributed
with a mean of 0 MW and a standard deviation of 91.5
MW. The imbalance of the fringe agent is assumed normally
distributed, with a mean of 0 MW and a standard deviation of
0.41 MW.

In the analytical model, the balancing supply function of
the system is assumed to be affine, and is expressed math-
ematically as a + b · q, where q is the amount of activated
balancing capacity (with q > 0 corresponding to upward
activation and q < 0 corresponding to downward activation),
a = 50 e/MWh, and b = 0.11 (e/MWh)/MW. This supply
function is an approximation of a balancing market with 8
agents, whose parameters are defined in Table I. The fringe
agent that we are interested in is agent A5.

For the case of design (D2), we use the formula proposed
by ELIA [20]: UI = LI = 150 MW, and

αU = αL =
200

1 + exp
(
450−x

65

) (4)
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TABLE I
THE BALANCING CAPACITY AND MARGINAL COST OF DIFFERENT AGENTS

FOR THE MDP CODE OF SECTION IV-A. UNITS ARE IN [MW] FOR P+

AND P− , AND IN [e/MWH] FOR C .

A1 A2 A3 A4 A5 A6 A7 A8
P+ 0 0 0 0 1 100 100 100
P− -100 -100 -100 -50 0 0 0 0
C 20 30 40 50 50 60 70 80

where x =
|Imbt|+|Imbtt−1|

2 is the average of the absolute
total system imbalances of the previous and current imbalance
interval. For the case of design (D3) and (D4), we assume a
value of V OLL = 920 MW.

Design (D1) (D3) (D4)
q∗ [MW] 1 0 1

p∗ [e/MWh] 55 any 50
Average Profit [e] 6.34 14.43 18.85

Opportunity cost dR?/dq [e/MWh] 0 8.11 12.71
TABLE II

RESULTS FOR (D1), (D3) AND (D4) IN THE SINGLE-AGENT SIMULATION.

Imbtt−1 [MWh] ]∞,−150] [-150,0] [0,150] [150,∞[

q∗ [MW] 1 1 1 1
p∗ [e/MWh] 50 55 55 50

Average Profit [e] 6.43 6.30 6.32 6.46
dR?/dq [e/MWh] 0 0 0 0

TABLE III
RESULTS FOR (D2) FOR DIFFERENT RANGES OF Imbtt−1 IN THE

SINGLE-AGENT SIMULATION.

Design (D1) (D2) (D3) (D4)
q∗ [MW] 1 1 0 1

p∗ [e/MWh] 50 50 any 50
Average Profit [e] 4.04 4.04 12.57 16.63

Opportunity cost dR?/dq [e] 0 0 8.53 12.59
TABLE IV

RESULTS FOR DIFFERENT MARKET DESIGNS USING THE ANALYTICAL
SOLUTION.

For the single-agent simulation, we use the Q-learning
algorithm [14] under a uniformly distributed policy for the
purpose of learning the Q function. We use a learning rate of

1
n(s,a) for each state-action pair (s, a), where n(s, a) counts
the number of visits to (s, a). We run 2, 000, 000 episodes for
each design with the same seeds, in order to isolate the effect
of the market design changes on the results.

We summarize the results of the simulation in Tables II
and III, and the analytical solution in Table IV. We observe
the following. (i) For every design, the bid quantity and
price are equivalent for the analytical case and the MDP
model3. (ii) The profits are in the same range for the analytical
solution and the MDP model. Differences (which amount to a
range of 2 e) can be expected, because the analytical model
assumes a continuous supply function, which is a continuous

3Indeed, in the MDP model, bidding at a price of 45 or 55 e/MWh is
equivalent to bidding at 50 e/MWh, because there is no other producer with
a marginal cost in the intervals [45, 50[ and ]50, 55]. For design (D3), the
bid price does not matter, because the bid quantity is 0 MW.

approximation of the stepwise supply function that is used
in the MDP code (see Table II). (iii) The opportunity costs
are very close to each other for the analytical model and the
MDP code. (iv) For design (D2), the range of values in the
imbalance of the previous period, Imbtt−1, does not influence
the selected action or the profit, see Table III. This observation
is in line with proposition 3.2.

B. Back-Propagation

We now concentrate on assessing experimentally the ability
of the different market designs to back-propagate the real-
time value of reserve to the day-ahead reserve market. For this
purpose, we use our MDP model for developing a multi-agent
simulation. In order to focus the analysis on the effects of the
design in conditions of high competition for upward balancing
capacity, we replace producers 5− 8 by 35 producers with a
capacity of 10 MW and marginal costs that increase uniformly
from 50 e/MWh to 84 e/MWh.

We discretize the agent action space by having agents bid
in price increments of 5 e/MWh and in quantity increments
of half of their capacity. Each agent is facing a portfolio
imbalance which is uniformly distributed between zero, and
half of its minimum and maximum capacity. There is also a
system imbalance with a zero mean and a standard deviation of
21.9 MW. Agent imbalances are independent of each other and
of the system imbalance. The day-ahead reserve demand curve
is assumed to be identical to the real-time reserve demand
curve, and based on the ORDC formula of Eq. (3).

We let every agents optimize its own policy using the
Q-learning algorithm under an ε−greedy policy. During the
learning phase, εk evolves as 0.05

N−k , where N is the maximum
number of iterations and k is the current iteration. Since all
agents are learning simultaneously, from the perspective of any
single agent, the environment is non-stationary, which implies
that we have no convergence guarantees. In order to cope with
the non-stationarity of the environment, we use a constant
learning rate [26].

We run 1, 500, 000 iterations in blocks of 100. After each
block of 100 iterations, we compute the outcome that we
would have obtained in the reserve market if each agent were
applying its policy greedily. We plot the sample average of
this reserve price for the different designs in Fig. 1.

We observe the following. (i) For (D1) and (D2), the
reserve price sample average converges to a small value. This
is anticipated by the analytical results, because the opportunity
cost for each agent is equal to 0. The decrease is slower for
(D2), because there are more states in (D2) than in (D1),
and therefore the convergence is slower. (ii) For (D3), the
reserve price sample average arrives slightly above the one
resulting from (D1). As the analysis shows [25], under (D3)
certain low-cost producers may face a positive opportunity cost
when bidding into the day-ahead reserve market. Nevertheless,
the resulting reserve price remains close to the one of (D1),
because few producers are sufficiently cheap to fulfill this
condition. (iii) Under design (D4), the day-ahead reserve price
converges to a value which is close to the average real-time
scarcity adder, i.e. 9.35 e/MWh.
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Fig. 1. The evolution of the reserve price in the simulation of section IV-B.

V. CONCLUSIONS AND PERSPECTIVES

We present a methodology for analyzing the European bal-
ancing market based on an analytical derivation of optimal bid-
ding under perfect competition assumptions, accompanied by
an MDP-based simulation. The analysis exposes the inability
of various market design alternatives in back-propagating the
value of reserve capacity in day-ahead markets. The analysis
validates the ability of a real-time market for reserve capacity
[1] to back-propagate the value of reserve capacity to day-
ahead markets, while also preserving the incentive of agents to
make their reserve resources available in the balancing market.

The policy discussion for the implementation of scarcity
pricing is advancing in Belgium. Since October 2019, the
Belgian system operator publishes4 scarcity prices one day
after operations based on the available reserve capacity that has
transpired during the previous day. In future research, we will
further analyze numerous important aspects of the mechanism.
The legal basis for the implementation of the mechanism can
rely on articles 18(4) and 44(3) of the EBGL. The specific
parameter choices for computing the scarcity adders, i.e. the
shape of the ORDC, are currently being investigated. Finally,
it is important to understand the interaction of the mechanism
with neighboring energy and reserve markets that are not
adopting the mechanism, and to ensure its compatibility with
the legal framework of EBGL in this multi-area setting.

REFERENCES

[1] A. Papavasiliou, Y. Smeers, and G. de Maere d’Aertrycke, “Study
on the general design of a mechanism for the remuneration
of reserves in scarcity situations,” UCLouvain, Tech. Rep.,
2019. [Online]. Available: https://www.creg.be/sites/default/files/assets/
Publications/Notes/Z1986Annex.pdf

[2] R. Dominguez, G. Oggioni, and Y. Smeers, “Reserve procurement and
flexibility services in power systems with high renewable capacity:
Effects of integration on different market designs,” Electrical Power
and Energy Systems, vol. 113, pp. 1014 – 1034, 2019.

4https://www.elia.be/en/electricity-market-and-system/studies/scarcity-
pricing-simulation

[3] European Commission, “Commission regulation (EU) 2017/2195 of 23
november 2017 establishing a guideline on electricity balancing,” Tech.
Rep., 2017. [Online]. Available: https://eur-lex.europa.eu/legal-content/
EN/TXT/PDF/?uri=CELEX:32017R2195&from=EN

[4] W. Hogan, “On an ‘energy only’ electricity market design for resource
adequacy,” Center for Business and Government, JFK School of Gov-
ernment, Harvard University, Tech. Rep., September 2005.

[5] ERCOT. (2015) Ercot market training: Purpose of ORDC,
methodology for implementing ORDC, settlement impacts for
ORDC. [Online]. Available: http://www.ercot.com/content/wcm/
training courses/107/ordc workshop.pdf

[6] W. W. Hogan and S. L. Pope, “PJM reserve markets: Operating
reserve demand curve enhancements,” Harvard University, Tech.
Rep., 2019. [Online]. Available: https://sites.hks.harvard.edu/fs/whogan/
Hogan Pope PJM Report 032119.pdf

[7] A. Papavasiliou and Y. Smeers, “Remuneration of flexibility using
operating reserve demand curves: A case study of Belgium,” The Energy
Journal, pp. 105–135, 2017.

[8] A. Papavasiliou, Y. Smeers, and G. Bertrand, “An extended analysis on
the remuneration of capacity under scarcity conditions,” Economics of
Energy and Environmental Policy, vol. 7, no. 2, 2018.

[9] ELIA, “Study report on scarcity pricing in the context of the 2018
discretionary incentives,” 2018.

[10] D. Ralph and Y. Smeers, “Risk trading and endogenous probabilities in
investment equilibria,” SIAM Journal on Optimization, vol. 25, no. 4,
pp. 2589–2611, 2015.

[11] A. Ehrenmann and Y. Smeers, Stochastic Equilibrium Models for
Generation Capacity Expansion, ser. Stochastic Optimization Methods
in Finance and Energy, International Series in Operations Research and
Management Science, Part 2. Springer, 2011, vol. 163, pp. 273–310.

[12] J. Bower and D. Bunn, “Experimental analysis of the efficiency of
uniform-price versus discriminatory auctions in the england and wales
electricity market,” Journal of Economic Dynamics and Control, vol. 25,
no. 3-4, pp. 561–592, Mar. 2001.

[13] D. Bunn and F. Oliveira, “Agent-based simulation-an application to
the new electricity trading arrangements of england and wales,” IEEE
Transactions on Evolutionary Computation, vol. 5, no. 5, pp. 493–503,
Oct. 2001.

[14] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, p.
279–292, May 1992.

[15] N.-P. Yu, C.-C. Liu, and J. Price, “Evaluation of market rules using a
multi-agent system method,” IEEE Trans. Power Syst., vol. 25, no. 1, p.
470–479, Feb. 2010.

[16] V. Nanduri and T. Das, “A reinforcement learning model to assess market
power under auction-based energy pricing,” IEEE Trans. Power Syst.,
vol. 22, no. 1, p. 85–95, Feb. 2007.

[17] Y. Ye, D. Qiu, J. Li, and G. Strbac, “Multi-period and multi-spatial
equilibrium analysis in imperfect electricity markets: A novel multi-
agent deep reinforcement learning approach,” IEEE Access, vol. 7, pp.
130 515 – 130 529, Sep. 2019.

[18] Y. Ye, D. Qiu, M. Sun, D. Papadaskalopoulos, and G. Strbac, “Deep
reinforcement learning for strategic bidding in electricity markets,” IEEE
Transactions on Smart Grid, vol. 11, no. 2, p. 1343–1355, Mar. 2020.

[19] A. Ehrenmann, “Equilibrium problems with equilibrium constraints and
their application to electricity markets,” Ph.D. dissertation, 2004.

[20] ELIA, “Tariffs for maintaining and restoring the residual balance of
individual access responsible parties 2020-2023,” Belgian Transmission
System Operator, Tech. Rep., 2019.

[21] European Commission, “Regulation (EU) 2019/943 of the European
Parliament and of the Council of 5 june 2019 on the internal market
for electricity (recast),” Official Journal of the European Union, 2019.

[22] ELIA, “Belgian electricity market: Implementation plan.”
[Online]. Available: https://ec.europa.eu/energy/sites/ener/files/
belgian-electricity-market-implementation-plan.pdf

[23] W. Hogan, “Electricity scarcity pricing through operating reserves,”
Economics of Energy and Environmental Policy, vol. 2, no. 2, pp. 65–86,
2013.

[24] P. Giesbertz. (2019) The power market design column - the scarcity of
scarcity pricing. [Online]. Available: https://www.linkedin.com/pulse/
power-market-design-column-scarcity-pricing-paul-giesbertz/

[25] A. Papavasiliou, “Analytical derivation of optimal BSP / BRP balancing
market strategies,” Tech. Rep., 2020. [Online]. Available: https:
//perso.uclouvain.be/anthony.papavasiliou/public html/AnalyticalV3.pdf

[26] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction.
MIT press, 2018.

https://www.creg.be/sites/default/files/assets/Publications/Notes/Z1986Annex.pdf
https://www.creg.be/sites/default/files/assets/Publications/Notes/Z1986Annex.pdf
https://www.elia.be/en/electricity-market-and-system/studies/scarcity-pricing-simulation
https://www.elia.be/en/electricity-market-and-system/studies/scarcity-pricing-simulation
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R2195&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R2195&from=EN
http://www.ercot.com/content/wcm/training_courses/107/ordc_workshop.pdf
http://www.ercot.com/content/wcm/training_courses/107/ordc_workshop.pdf
https://sites.hks.harvard.edu/fs/whogan/Hogan_Pope_PJM_Report_032119.pdf
https://sites.hks.harvard.edu/fs/whogan/Hogan_Pope_PJM_Report_032119.pdf
https://ec.europa.eu/energy/sites/ener/files/belgian-electricity-market-implementation-plan.pdf
https://ec.europa.eu/energy/sites/ener/files/belgian-electricity-market-implementation-plan.pdf
https://www.linkedin.com/pulse/power-market-design-column-scarcity-pricing-paul-giesbertz/
https://www.linkedin.com/pulse/power-market-design-column-scarcity-pricing-paul-giesbertz/
https://perso.uclouvain.be/anthony.papavasiliou/public_html/AnalyticalV3.pdf
https://perso.uclouvain.be/anthony.papavasiliou/public_html/AnalyticalV3.pdf

	Introduction
	Trading of Energy and Reserve in European Markets
	Motivation of Our Paper
	Existing Modeling Frameworks
	Contributions and Structure

	A Model of the European Balancing Market Based on Markov Decision Processes
	Building Up the MDP Model
	Single-Stage MDPs
	Two-Stage MDPs
	Three-Stage MDPs

	Market Design Variants
	The Vanilla European Design (D1)
	Imbalance Penalties (D2)
	Adders on Imbalance Charges (D3)
	Scarcity Pricing (D4)


	Analytical Results
	Statement of Analytical Results
	Proof Strategy

	Illustration on a Case Study
	Validation of Analytical Results
	Back-Propagation

	Conclusions and Perspectives
	References

