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Abstract—We implement a Monte-Carlo simulator for obtain-
ing statistically confident estimates of scarcity pricing adders in
the context of implementation of a scarcity pricing mechanism
in Belgium. The analysis is based on a multi-level, multi-
horizon simulation of day-ahead and real-time operations in the
Belgian market. The methodology relies on k-means clustering for
selecting a set of representative day-ahead forecasts, followed by
the generation of synthetic real-time load scenarios for simulating
real-time operations.

Index Terms—operating reserve demand curve, scarcity pric-
ing, unit commitment, k-means

I. INTRODUCTION

The European Union has the ambition of becoming climate
neutral by 2050 [1], and the integration of renewable energy in
the electricity sector will have to increase in order to achieve
this goal. This increased integration of renewable energy has
a two-fold effect: on the one hand, it increases the variability
in the system and the need for flexible assets, and on the
other hand it also decreases their profitability by pushing them
further down the merit order curve.

Scarcity pricing has been considered as an adaptation to
market design for coping with this transition. Papavasiliou et
al. [2], [3] have demonstrated the potential of the mechanism
to restore economic viability for flexible assets. The mecha-
nism takes the form of an adder that supplements the price
of energy when reserve is scarce in the system. The adder
is valued with an Operating Reserve Demand Curve (ORDC)
based on the value of lost load (VOLL) and the loss of load
probability (LOLP). Introducing flexibility in the procurement
of reserve with an ORDC has been proposed in [4] and was
later anchored to the loss of load probability by Hogan in [5].

The authors in [6] analyse the potential level of the adder in
Belgium by investigating (i) the incentives created by different
shapes of ORDCs on the dispatch and (ii) the resulting
adder for the historical load that took place in 2018. Their
investigation relies on a simulator of the short-term operation
of the Belgian electricity market. The authors emulate the
electricity market with 4 embedded optimization problems that
commit and dispatch assets in sequence as the day unfolds.

The present work proposes to extend [6] to a Monte-
Carlo simulation that enhances the statistical reliability of the
results by exposing the simulated Belgian system to multiple
years of uncertainty. The Monte-Carlo simulation is based on
synthetically generated scenarios.

The synthetic scenarios are obtained with a two-step pro-
cess. The k-means algorithm is first applied on the net forecast
flexible production, so as to cluster similar days together. A
time series model is then used in order to generate synthetic
real-time demand from the de-seasonalized clustered historical
time series.

Clustering scenarios in order to reduce computational cost
is a common practice in the literature on power system
operations, and has been used in capacity expansion problems
[7] and in market simulation [8]. This method groups together
similar scenarios, in order to avoid redundant computation.

Synthetic data generation is receiving increasing attention
with the rise of data-intensive methods such as reinforcement
learning or deep learning [9]. Artificial data-sets are an effi-
cient way to confront a system to a variety of conditions, and
these methods have also also been applied to power system
operations [10].

The contribution of this paper is a framework for assessing
the incentives that are induced by a scarcity pricing mechanism
in Belgium. This framework relies on a Monte-Carlo simu-
lation of daily scenarios, with the aim of providing reliable
estimations of the expected yearly adder that can be faced
by potential investors. This analysis is used as a basis for
supporting recommendations to the Belgian regulator for the
roll-out of scarcity pricing in Belgium.

The paper is organised as follows: section II summarises
the basics of scarcity pricing, section III characterizes the
variants of ORDC considered for this analysis, section IV
describes the model used in [11], section V describes our
scenario generation process and VI presents and analyses the
derived results. We conclude in section VII.

II. SCARCITY PRICING AND ORDCS

Scarcity pricing based on ORDCs is a market design adap-
tation that aims at accurately valuing energy and reserve in
periods of scarcity. The mechanism uses an operating reserve
demand curve which depends on the LOLP and VOLL in
order to approximate the intrinsic stochasticity of an economic
dispatch in the context of a deterministic market clearing
model. This ORDC can be interpreted as the incremental value
derived by a system operator for holding additional reserve
capacity which increases the security of the system. It is
defined in (1) as a demand curve depending of the loss of



load probability as a function on the reserve capacity that is
available in the system (r), the value of losing load and a
proxy of the marginal cost of the marginal unit (MC).

V R(r) = LOLP (r) · (V OLL−MC) (1)

Under co-optimization of reserve and energy, the ORDC
is the explicit demand curve of the system operator for
procuring reserve which is introduced in the objective function
of a multi-product auction model. The price of reserve and
energy are directly obtained from the dual variables of the
co-optimized problem.

In the absence of co-optimization, the ORDC is used in
order to compute an ORDC adder. The outcome of co-
optimization is then emulated by remunerating the available
reserve capacity in the system with the adder, and balancing
energy with the energy price of the non-cooptimized problem
supplemented by the adder.

III. VARIANTS OF ORDC

The formulation of the ORDC in (1) is based on a number
of assumptions. This work aims at quantifying the effect that
these assumption may have on the cost of operating the system
and on the level of the resulting adders.

We consider three sets of assumptions, that are further
explained hereunder.

1) VOLL at 8300 e/MWh versus 13500 e/MWh: The
Federal Planning Bureau of Belgium has estimated VOLL for
Belgium at 8300 e/MWh [12]. The value of 13500 e/MWh
has been considered as the current bidding limit on imbalance
prices [13].

2) Pre- or Post-Activation: This variant corresponds to
whether balancing capacity is measured before or after the
imbalance of a given imbalance period is cleared.

3) Independent or Correlated 7.5-minute imbalance incre-
ments: Formula (1) can be generalized for different types
of reserve, depending on their activation time. For Belgium,
energy and reserve would be priced over 15-minute periods.
This generalization would take the form of distinct ORDCs for
the two 7.5-minute periods. The first ORDC would remunerate
generators providing reserve that can be made available in
7.5 minutes and would be dependent on the LOLP after
7.5 minutes. The second ORDC would remunerate generators
providing reserve that can be made available in 15 minutes and
would be dependent on the LOLP after 15 minutes. These
different loss of load probabilities are parametrized using the
distribution of the historical imbalances of the system after
7.5 minutes and 15 minutes. The assumption of independent
versus correlated imbalance increments concerns the assumed
correlation between the two 7.5-minute imbalance increments
that form the full 15-minute imbalance. Independently corre-
lated 7.5-minute increments would imply a higher standard
deviation than correlated ones, and as such would produce
wider ORDC.

Depending on these assumptions, the ORDC will be more or
less wide and this will influence the willingness of the system

operator to procure reserve. With a wide ORDC, the system
operator procures reserve more conservatively, however this
higher reliability is expected to come at a higher operating
cost. Narrow ORDCs are expected to result in lower operating
cost, but would provide less reliability to the system operator.
Our analysis quantifies this tradeoff between incurring non-
negligible fixed costs for a higher level of reliability versus
operating the system at a lower cost with a higher risk of
shedding load.

IV. SHORT-TERM SIMULATION MODEL

The objective of the short-term simulation model is to
capture the decision process of a system operator faced with
the revelation of uncertainty in an idealized representation of
system operation based on a unit commitment and economic
dispatch model. This uncertainty can correspond to variability
in production or demand and the response of the system
operator will be dependent on the ORDC that is selected.

The model that we develop is composed of 4 optimization
problems that are solved in sequence as the day unfolds. A
schematic overview of the simulator is presented in figure 1.
Assets are scheduled in one of the four modules, depending
on their reactivity and inertia.

1) Inelastic assets cannot modify their scheduled produc-
tion and are dispatched in the day-ahead unit commit-
ment problem, which is solved once in the day ahead.

2) Slow balancing assets need one or two hours to start up,
but are very reactive once online. They are committed in
the intermediate rolling window unit commitment, that is
solved every 6 hours over a 24-hour scheduling window.
They are dispatched in the real-time economic dispatch.
CCGTs comprise the bulk of the slow balancing assets.

3) Fast balancing assets are expensive but can be started in
less than 15 minutes. They are committed in the pre-real
time rolling window unit commitment, which is solved
every 15 minutes with a 1-hour scheduling window.
Fast balancing assets include emergency generators and
demand response.

The model simulates the limitations of the different recourse
actions at the disposal of the system operator and a complete
characterization of the model can be found in [11].

V. SCENARIO GENERATION

The objective of the synthetic generation process is to create
artificial scenarios based on the historical scenarios. In order
to reproduce a sequenced operation planning, scenarios are
formed, in our framework, by sampling a real-time realisation
of load, which depends on an associated day-ahead forecast.
The day ahead-forecast is used as input to the day-ahead unit
commitment module of the simulator. The goal is to obtain
an initial position of the day. The real-time scenario updates
the forecast of the real-time operation as the day unfolds. The
scenario generation process should include a diversity of day-
ahead load forecasts, that lead to different initial positions
and a diversity of real-time load realisations that follow the
aforementioned day-ahead load forecast.



Fig. 1. Sequence of models in our simulator of short-term operation.

The synthetic generation process based on the historical
day-ahead and real-time load profiles is summarized hereun-
der.

1) The historical time series are divided by season, in order
to account for the seasonality of the ORDC.

2) K clusters of days are created by clustering the historical
day-ahead demand forecast using the k-means algorithm.

3) Synthetic forecast errors are generated from a time series
model of the historical forecast error for a given cluster.

4) Synthetic real-time scenarios are generated by sampling
day-ahead forecasts, and combining them with the gen-
erated forecast errors.

The remainder of the section will describe the day-ahead
clustering and the real-time scenario generation.

A. Clustering of Day-Ahead Scenarios

The clustering is performed on the day-ahead net flexible
production. The goal is to cluster together days that would
produce similar initial positions. This initial position includes
a pumped-hydro storage target that should be followed in real
time, as well as inelastic production. Similar days are expected
to follow similar flexible generation profiles. The clustering is
performed on profiles that are 3 days long, in order to match
the horizon of the simulator.

Loyd’s algorithm is modified in order to introduce pre-
selected days of interest in the clustering, following [7].
This ensures that the most extreme days are represented, and
decreases the smoothing effect that clustering might have on
the results. Such days of interest include (i) the day with the
highest demand (Maximum value day) and (ii) the day with
the highest difference between the maximum and minimum in
the net load of the day (Maximum difference day).

The algorithm used to create K clusters from the set of
historical scenarios X is described hereunder.

1) Initialisation:
a) Take p pre-selected days as centers c1, . . . , cp.
b) For k ∈ {p + 1, . . . ,K}, take x ∈ X as a new

center ck with probability D(x)2∑
x∈X D(x)2 with D(x)

being the distance between x and the closest centre
that has already been selected.

2) Clustering: For k ∈ {1, . . . ,K} set the cluster Ck to
be the set of scenarios x ∈ X that are closer to ck than
they are to cj for j ̸= k. Distances are measured using
the Euclidean distance.

3) Update: For k ∈ {p+1, . . .K}, set ck to be the centroid
of all scenarios in Ck:

ck ←
1

|Ck|
∑
x∈Ck

x. (2)

4) Repeat steps 2 and 3 until the clusters Ck for k ∈
{1, . . . ,K} no longer change, and measure the quality
of the clustering as the sum of the distance between the
scenarios and the centroid of their cluster:

d =
∑

k∈{1,...K}

∑
x∈Ck

(x− ck)
2. (3)

The full algorithm is repeated 20 times and the best cluster-
ing is selected based on its measured quality. The k-means++
[14] algorithm is implemented in the initialization step 1.a), in
order to reduce the number of runs of the full algorithm. This
initialization ensures an efficient spread of the initial centers.

Notice that the centers of the pre-selected clusters are not
updated in step 3). This reduces the quality d of the clustering,
but ensures the representativeness of the extreme days.

B. Generation of Real-Time Scenarios

The generation of synthetic real-time scenarios is a four-step
processes.

1) A time series model is produced for each cluster of days
based on the historical time series of the forecast error.
This model decomposes the time series into a seasonal
component, a trend component and a residual component
using the Seasonal and Trend decomposition using Loess
(STL) [15].

2) Synthetic residuals are obtained by simulating episodes
of the deseasonalized residual component with an
ARIMA model.

3) Synthetic forecast errors are obtained by combining
the simulated residuals with the seasonal and trend
component of the STL model.

4) Real-time scenarios are finally generated by adding the
synthetic forecast errors to sampled days of the cluster.

VI. CASE STUDY

The input data that are used for the Monte-Carlo simulator
are the historical load, renewable production and import /
export of electricity for Belgium from 2016 to 2018. The
results are used for supporting the Belgian regulatory authority



for a market design proposal for the implementation of scarcity
pricing in Belgium.

We first assess the extent to which the generated synthetic
scenarios are representative, and we then discuss the accuracy
improvement and the insights that are provided by the Monte-
Carlo simulation in relation to the value of the adder.

A. How Representative are the Synthetic Scenarios?

Figs. 2a and 2b display the cumulative probability for a
cluster of 30 days of (a) the forecast error generated by the
time series model and (b) the real-time load produced by
our method for a cluster of 30 days. Both figures show that
the synthetic sceanrio generation method is valid even tough
it tends to slightly underestimate the most extreme forecast
errors.

B. Accuracy improvements provided by the Monte-Carlo sim-
ulation

The level and confidence interval of the historical and
simulated yearly mean adder for 2016, 2017, 2018 and for
the aggregate 3-year interval for every variant are illustrated
in Fig. 3. Table I presents the highest and lowest accuracy
improvement provided by the Monte-Carlo simulation. The
simulations are performed over 10 years of artificial scenarios.

The most notable improvements on the confidence interval
brought by the Monte-Carlo simulation are observed in 2017
for the correlated variants and for the independent variants
with the VOLL at 8300. These variants produce a notably
higher mean adder than their simulated counterparts, and this
behaviour is not exhibited by the independent variants with the
VOLL at 13500 e/MWh. Most of this increase in the yearly
mean adder is driven by a historical scenario that produces
a mean daily adder of more than 150 e/MWh. The more
conservative variants in 2017 are not affected by this outlier
scenario, because of their more conservative commitment. The
confidence interval of the adder from 2016 to 2018 decreases
by 30 to 69% depending on the variants.

The accuracy improvement lies at approximately 33% for
2016. This corresponds to a 0.33 to 0.51 e/MWh narrower
confidence interval. For 2018, two variants exhibit no improve-
ment or almost no improvement in their confidence interval
due to the influence of extreme scenarios, which suggest the
need for a larger number of samples. The remaining variants
exhibit an improvement that ranges from 25 to 46%. This
corresponds to a confidence interval that is 0.14 to 0.59
e/MWh narrower.

The yearly mean adder analysis can also be conducted
by simulating over artificially generated years that would be
similar to the historical years. Artificial years can be generated
by iterating over the days of a particular historical year and
replacing them with artificially generated scenarios based on
the characteristics of the original day. Experiments are per-
formed by sampling the artificial scenario in ways. In the first
approach, the clustering method samples the artificial scenario
in the pool of scenarios built from the cluster to which the

TABLE I
MINIMUM AND MAXIMUM ACCURACY IMPROVEMENT ON THE

CONFIDENCE INTERVAL PROVIDED BY THE MONTE-CARLO SIMULATION.

2016 2017 2018 2016-2018

Mininum [e/MWh] 0.3321 0.5480 -0.0388 0.2101

[%] 33.2 48.9 -6.5 29.9

Maximum [e/MWh] 0.5082 2.4469 0.5916 0.7288

[%] 36.6 86.9 46.0 69.1

original day belongs. In the second approach, the “historical-
day” method samples the artificial scenario in the pool of
scenarios built with the day-ahead forecast of the original
scenario. The pool used for the sample of the “historical-day”
method is actually a subset of the pool used for the clustering
method and so we expect the latter method to produce artificial
years that are more diverse than those of the former method.

Fig. 4 presents the mean adder of artificial years generated
by both methods based on 2018. This graph allows us to
conclude that simulating the system based on historical day-
ahead data is more accurate than clusters based on the net
day-ahead flexible production.

VII. CONCLUSION

We perform a Monte-Carlo simulation of Belgian system
operations in order to test the performance of scarcity pricing
based on ORDC against a range of uncertain conditions. This
process allows us to increase the statistical reliability of our
indicators for the efficiency of different variants of operating
reserve demand curves in the context of the discussion for
introducing scarcity pricing in Belgium.

Our Monte-Carlo simulation is performed using synthetic
scenarios that are created by combining historical day-ahead
load with synthetic forecast errors. By exposing the simulator
to more diverse scenarios, we manage to improve the accuracy
of the confidence interval on the level of the adder by 30 to
69% for the period between 2016 to 2018.
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